Hyperparameters¶
General parameters¶
Argument |
Type |
Help |
---|---|---|
–seed |
int |
random seed to be used |
–use_cuda |
bool |
Use GPU |
Data parameters¶
Argument |
Type |
Help |
---|---|---|
–data |
bool |
if True, launch data creation |
–dump_dir |
str |
path where data and models are dumped |
–norm |
str |
Feature normalization used in training/validation: None, perfilter, global, cosmo, cosmo_quantile |
–redshift |
str |
Host redshift used in training/validation: zpho, zspe or None |
–source_data |
str |
Data source: photometry or salt |
–no_overwrite |
bool |
If True, overwrite preprocessed dir when creating database |
–data_fraction |
float |
Fraction of data to use |
–override_source_data |
str |
Change the source data (use saltfit or photometry) |
Training parameters¶
Argument |
Type |
Help |
---|---|---|
–train_rnn |
bool |
Train RNN model |
–train_rf |
bool |
Train RandomForest model |
–monitor_interval |
int |
Validate every monitor_interval epochs–metrics |
Validation Parameters¶
Argument |
Type |
Help |
---|---|---|
–validate_rnn |
bool |
Validate RNN model |
–validate_rf |
bool |
Validate RandomForest model |
–speed |
bool |
Run RNN speed classification benchmark |
–calibration |
bool |
Evaluate model calibration |
–performance |
bool |
Get performance metrics + plots |
–metrics |
bool |
Compute performance metrics |
–science_plots |
bool |
Plots of scientific interest |
–model_files |
bool |
Path to model files |
–prediction_files |
bool |
Path to prediction files |
–metric_files |
bool |
Path to metric files |
Visualization Parameters¶
Argument |
Type |
Help |
---|---|---|
–explore_lightcurves |
bool |
Plot a random selection of lightcurves |
–plot_lcs |
bool |
Plot a random selection of lightcurves predictions |
–plot_prediction_distribution |
bool |
Plot lcs and the histogram of probability for each class |
RNN parameters¶
Argument |
Type |
Help |
---|---|---|
–cyclic |
bool |
Use cyclic learning rate |
–cyclic_phases |
list |
Cyclic phases |
–random_length |
bool |
Use random length sequences for training |
–random_redshift |
bool |
If True, randomly set the spectroscopic redshift |
–weight_decay |
float |
L2 decay on weights (for variational RNN) |
–layer_type |
str |
Recurrent layer type. Choose lstm,gru,rnn |
–model |
str |
Recurrent model type. Choose vanilla,variational,bayesian |
–learning_rate |
float |
Learning rate |
–nb_classes |
int |
Number of classification targets |
–nb_epoch |
int |
Number of epoch |
–batch_size |
int |
Batch size |
–hidden_dim |
int |
Hidden layer dimension |
–num_layers |
int |
Number of recurrent layers |
–dropout |
float |
Dropout value |
–bidirectional |
bool |
Use bidirectional models |
–rnn_output_option |
str |
RNN output options. standard or mean |
–pi |
float |
mixing coefficient for Bayes prior |
–log_sigma1 |
float |
Initialization parameter for BayesRNN layers |
–log_sigma2 |
float |
Initialization parameter for BayesRNN layers |
–rho_scale_lower |
float |
Initialization parameter for BayesRNN layers |
–rho_scale_upper |
float |
Initialization parameter for BayesRNN layers |
–log_sigma1_output |
float |
Initialization parameter for BayesLinear output layers |
–log_sigma2_output |
float |
Initialization parameter for BayesLinear output layers |
–rho_scale_lower_output |
float |
Initialization parameter for BayesLinear output layers |
–rho_scale_upper_output |
float |
Initialization parameter for BayesLinear output layers |
–num_inference_samples |
int |
Number of samples to use for Bayesian inference |
–mean_field_inference |
bool |
Use mean field inference for bayesian models |
Random Forest parameters¶
Argument |
Type |
Help |
---|---|---|
–bootstrap |
bool |
Activate bootstrap when building trees |
–min_samples_leaf |
int |
Minimum samples required to be a leaf node |
–n_estimators |
int |
Number of trees |
–min_samples_split |
int |
Min samples to create split |
–criterion |
str |
Tree splitting criterion |
–max_features |
int |
Max features per tree |
–max_depth |
int |
Max tree depth |